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Stochastic Equations of the Langevin Type 
under a Weakly Dependent Perturbation 
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Asymptotic expansions for the probability density of the solution of a stochastic 
differential equation under a weakly dependent perturbation are proposed. In 
particular, linear partial differential equations for the first two terms of the 
correlation time expansion are derived. It is shown that in these expansions 
the boundary layer part appears and non-Gaussianity of the perturbation is 
important for the Fokker-Planck approximation correction. 

KEY WORDS:  Langevin equation; stochastic Liouville equation; Fokker- 
Planck equation; correlation time expansion. 

1. INTRODUCTION 

The description of statistical systems by means of stochastic differential 
equations of the Langevin type is a powerful method of their analysisJ 1-3) 
As a matter of convenience it is often assumed that the stochastic per- 
turbation in these equations is white noise. In this case the solution is 
Markovian and the Fokker-Planck equation exists for the probability 
density. If the stochastic perturbation is not white noise, then the solution 
of the stochastic differential equation is a non-Markovian process and in 
general one cannot obtain a closed equation for the probability density. 

We consider the N-dimensional equation of the Langevin type 

Y c j ( t ) = a j ( t , x , e ) + ~ ( t e - Z , x ) b j ( t , x , e ) ,  t > 0 ,  j = l  ..... N (1) 

Institute for Applied Problems of  Mechanics and Mathematics of Ukrainian Academy of 
Sciences, Naukova 3-b, Lviv, Ukraine. 

1045 

0022-4715/9310200-1045507.00/0 �9 1993 Plenum Publishing Corporation 



1046 Bobryk 

where e is a small positive parameter, and the nonrandom functions 
aj(t, x, e), bj(t, x, e) have the asymptotic expansions 

k = O  k =  - -1  

The zero-mean random function r x ) ~  r -2, x) is strictly stationary 
in t. It satisfies a weakly dependent condition, namely the cumulants 

Kin(t-t1,..., t - t in,  y, Yl,.-, Ym) =-- ( (~(t, y)~(ti, y~)---~(tm, Ym))> 

of the random function r x) satisfy the inequalities 

IK,,(t - tl ,..., t -  tin, y, Yl ,..., Ym)l  

~flmeXp{--~t ~ [t--t~l}, f l= ,a>O (3) 
k = l  

It follows from this and from the properties of the cumulants TM 4, 5) that the 
values of function ~,(t, x) are almost independent for different t and 
small e. 

Let p(t, x) be the probability density for the N-component solution of 
Eq. (1). It satisfies the stochastic Liouville equation ~ 

c~p(t, x ) =  _c~ [aj(t, x, e)p(t, x)] --Txj [~(t,  x) hi(t, x, e) p(t, x)] 
3t Oxj 

(4) 

Then, according to van Kampen's lemma, (1) the probability density P(t, x) 
for the N-component process x(t) is the average P(t,x)= (p(t, x))  over 
the distribution of r x). One can represent the formal solution of Eq. (4) 
by means of the time-ordered exponential and obtain (a) 

P( t, x) = ( T exp { -  f~ F(s, x) ds} l p(O, x) (s) 

where Texp denotes the time-ordered exponential, and F(s, x) denotes the 
differential operator 

F(s, a, t, x, el +  at, x)b , ( , ,  x, el 
uxj v.~j 
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It is difficult to evaluate the right-hand side of formula (5). The method of 
ordered operator cumulants ('' 4-7) is the most general approach developed 
for this purpose. In conformity with it, some approximations for finding 
P(t, x) were obtained in refs. 8 and 9. Another approach consists in the 
construction of the so-called best Fokker-Planck approximations. TM ~o-,2) 
For this purpose the projection approach (1~) and the functional-calculus 
approach (14~ also have been applied. 

All of these methods were applied to the Gaussian model of the 
random perturbation in Eq. (1) and for aj(t, x, e)=aj(x), bj(t, x, ~)= 
e-lbj(x), and ~,(t, x ) =  ~,(t). 

The major aim of this paper is to propose an approach to the general 
non-Gaussian model of noise in (1). It consists in the reduction of the 
problem of computation of the right-hand side of (5) to the construction 
of the solution of an infinite chain of integrodifferential equations contain- 
ing a small parameter in derivatives. For this chain we use an asymptotic 
method for singular perturbed equations (ref. 15, Chapter 4; ref. 16) and it 
enables us to obtain for P(t, x) the asymptotic formula 

P(t, x) = ~ ~k(gk(t, X) + Zk(Z, X)) (6) 
k = 0  

where z = te-2 is a stretched variable. 
This approach makes it possible to find successively closed equations 

for go(t, x), Zo(Z, x), gl(t, x), z,(z, x),.... If aj(t, x, e)=aj(t, x), bj(t, x, e)=  
e-lbj(t, x), formula (6) gives the correlation time expansion. Moreover, 
go(t, x) is the solution of the Fokker-Planck equation and other terms of 
(6) can be obtained through the solution of the Fokker-Planck equation 
by means of quadrature formulas. The so-called boundary layer terms 
zo(z, x), z~(z, x),..., are of vital importance for t near t = 0. 

Note that in the Gaussian case, g,(t,x)=O, and so the non- 
Gaussianity of the perturbation in Eq. (1) is important for the correction 
of the Fokker-Planck approximation. 

2. A S INGULAR PERTURBED INFINITE CHAIN OF 
INTEGRODIFFERENTIAL EQUATIONS FOR P(t, x) 

When we take the average of Eq. (1) over the distribution of r x) 
we find the average <r In general one cannot express it 
through P(t, x) and obtain a closed equation for P(t, x). We use the 
following formula ('7" ,8) that allows us to find this average through the 
average of variational derivatives of p(t, x): 
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(~,(t, x) p(t, x ) )  

= L  ..--r;/m=m:o0 . . . . . .  - ~  ~ K m ( e - 2 ( t - - s ' ) ' " " e - 2 ( t - - S m ) ' x ' Y '  ..... Y m )  

( (~mp(t'x) )dyl...dymdS1...dSm (7) 
X O~e(S1 ' Yl) '"I~e(Sm, Ym) 

Writing Eq. (4) in the integral form of t, we have for the variational 
derivatives the equations 

5mp(l, X) 
~r Yl )""  (~(Sm, Ym) 

= -- [aj(tl, x, ~) -- r x) bj(tl, x, e)] 

5rap(t1, x) } dt 1 
x 5~(si ,  Yl)" "5~(sm, Ym) 

- .=1  ~ O(t-s . )  O6(~x j y ')  bj(s., y. ,  ~) 

6 m- lp(s. ' y.) 
x (8) 

6~.(sx, Yl)'.'~3~(s._1, y ._ , )5~(s ._1 ,  Yn+l)" "'5~(Sm, Yrn) 

where O(t) is the Heaviside unit function and 6(x) is the Dirac delta 
function. 

Note that formula (7) has sense when instead of p(t, x) we substitute 
the variational derivatives of p(t, x). Taking it, (4), and (8) into account, 
we obtain for P(t, x)=  (p(t, x ) )  the infinite chain of integrodifferential 
equations 

O(p(t,x))  
8t 

= 8--~j [aj(t, x, ~)<p(t, x)>] 

ff ~ f ~  leo gm(t__Si t__Sr n ) X . . . . . . .  -'~ ,..., ~,2 , X, Yl,'", Ym -~ -oo 

,,; Ym'-- dy, .-'dy,~ dS, -- 
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~mp(t, x) 
(6~jsl ,  y,)...d~(s~, y~)) 

, \] 
Yl )""  (~,(Sm, "Ym)/_J 

x . . . . . .  K k  "~"i '"" g2 ,x, Ym+l ..... Ym+k 

X O#~(S1, Y l ) " " ~ ( S r n + k ,  Ym+k) 

X dym+l...dym+kdSm+l...dSm+kldt 1 

- ~=,~ O(t-s~)a~(x-~x+Y~)b/(s,, y,,~) 

< ~m-lp(sn' Y~) ) )  
x 6~jsl, y l ) -"6r  ' 

m =  1,2 (9) 

I t  follows from (3) that the Laplace  transforms 

Fro(x, Yl, Pl  ..... Ym, P=) 

= exp - pnt, Km(tl ..... t,~,x,y,,...,ym) dt~'"dtm 
�9 n = l  

exist for - a < Re p ,  < 0, n = 1, 2, 3,..., m. 
Let  us introduce the following nota t ion :  Wo(t, x) = <p(t, x) >, 

Wm(t , X, Yl, Pl,'", Y~, P~) 

t t I ~  1 
n 1 

x 6~Js~,yx)'..6~jsm, y,~) ds~...dsm, m = 1 , 2 , 3  .... 

Then,  using the inverse Laplace t ransform formula, we can reduce the 
chain (9) to an infinite chain of integrodifferential equations conta in ing a 
small parameter in the derivatives 
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eWo(t, x) 
at 

= -  8-~-[ai(t,x,e) wo(t,x)]-~-~x j bj( t ,x ,e)  
~Xj rn=l  m t (2ui)" 

x w,~(t, x, y i ,  p~,..., ym, Pro) dp~..,  dpm dye ."  dym| 
A 

Wo(0, x) = p(0, x) - / i ( x -  x(0)) 

82 OWm(t , X, Yl, Pl ,"', Ym, Pro) 
8t 

pm)--e 
~l~1 t_ 

86(x-- y,) 
~x s bat, y . ,  ~ ) 

(10) 

q 
x w,~_l(t, y , ,  Yl, Pl,..-, Y , -1 ,  P , - I ,  Y~+I, P,+I ..... Ym, p~)J 

_ ~2 ~ [aj(t, x, e) win(t, x, Yl, Pl ,.-., Ym, P,,)]  
Oxj 

I ,~k+2 

bi(t ,x,e)  ~ kt(21ri) k 
j k = l  

• . . . . . .  X, Ym+t, Pro+ 1,'", Ym+k, Pro+k) 
-oo - ~  ~ 

x w,.+k(t, x, Yl,  Pl ..... Y,.+k, P..+k) dPm+l" "'dPm+k 

xdYm+l...dym+k],wm(O,X, yl,pl, . . . ,ym,Pm)=O, m = 1, 2, 3,... 

Here and below the integrals are taken along the straight lines Re Pk = 
- Ck < 0, k = 1, 2, 3 ..... if integration boundaries are not determined. 

Since in the chain (10) Re p k < 0 ,  we use the approach from ref. 15, 
Chapter 4, and ref. 16. Namely, let us seek the solution of this chain in the 
form 

wo(t, x ) =  ~ ~(Wo~(t, x)+zo~(~, x)) 
k=O 

win(t, x, y~, Pl ..... Ym, Pro) = ~ 8k(Wmk( t, X, Yi, Pl ,..., Ym, Pr~) 
k=O 

+ z,,,(z, x, Yl, Pl,-.., Y,,, P,,)) (11) 
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where z =  te -2, m =  1, 2, 3,. ,  and the functions Wok, Zok, Wink, Z,~ must 
satisfy the initial conditions 

and 

Woo(O, x) + zoo(O, x) = p(O, x) 

wo~(O, x) + zok(O, x) = 0 

Wmk(O , X, Yl ,  Pl, '",  Ym, Pm)'k'grak( O, X, Yl ,  PI,"',  Ym, P r o )  = 0  

lim ZOk(Z, X) = O, 

(12) 

lim z..k(z, x, y~, Pl ..... Ym, P..) = 0 
~ ----* oo 

k = 0 ,  1,2, 3 ..... m = 1 , 2 , 3  .... 

Substituting the regular parts 

ekWo~(t,x), ~ ekW,.k(t ,x ,y, ,Pl , . - ' ,Ym, P.,) 
k = O  k = O  

(13) 

of the expansions (11) instead of Wo(t, x) and win(t, x, Yl, Pl ..... Ym,  Pro) 
into (10) and equating coefficients of go, el ..... one can successively obtain 
closed integrodifferential equations for functions Wok(t, x), k = 0, 1,..., but 
their solutions do not satisfy in general the initial conditions for the chain 
(10). The boundary layer parts 

• ekZok(Z, X), ~ e~Z,.~(Z, X, Yl, Pl ..... Ym, P,~) 
k = O  k = O  

serve this purpose. 
Introducing the stretched variable z=te  -2 in (10), substituting the 

boundary layer parts into (10), expanding in Taylor series ajk(t,x) 
and bik(t ,x) about  t=O, and equating coefficients of e~ one can 
successively obtain closed equations for Zok(Z, x), k = 0, 1 ..... 

3. CORRELATION TIME EXPANSION FOR THE PROBABILITY 
DENSITY P(t, x) 

Let us suppose that a/(t, x, e)= a/(t, x), b/(t, x, e )=e- lb j ( t ,  x). In this 
case the parameter e defines the correlation time of the random perturba- 
tion in Eq. (1). Following the above-mentioned approach, we shall obtain 
linear partial differential equations for the first two terms of the asymptotic 
expansion of P(t, x) in powers of e. 
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Substituting the regular and boundary layer parts of the expansions 
(11) in (10) and equating coefficients of t ~ s 1, we get the equations for 
Woo(t, x), Wol(t, x): 

OWok(t, x) 
Ot 

~xj[ k+' 1 t3 [aj(t, x) Wok(t, X)'] -- bj(t, x) ~ m! (2rci)" 
O)9 m = l  

x f_2  ... f 2  S "" f Fro(x, Yl, Pl,..., Ym, Pro) 

X Win, k-m+ l(t, X, Yl, Pl,'", Ym, Pro) dpl" .'dpm dyl "" "dym] 

~ [  a~(x-y . )  
p.wko(t, x, y, ,  Pl ..... Yk, Pk) Ox 

n = l  

xbj(t,  Yn) Wk-l,O(t, Yn, Yl, Pt,"', Yn-1, Pn-1, Yn+l, Pn+l ..... Yk, Pk)J =0, 
k=0,1  

p,wtl(t, x, y, p) = O6(x - y) bj(t, y) wol(t, y) (14) 
Ox 

and also for terms zoo(z, x) and Zol(Z, x) of the boundary layer part 

~Zoo(Z, x) eZol(Z, x) =0, =0 (15) 

Under (14) we obtain for Woo(t, x) the equation 

c3w oo( t, x) 
Ot 

~ [aj(t,x) Woo(t,x)] ~----~i[bj(t,x)-~i 
Oxj 

O6(x Y) bj,(t, y) woo(t, y) dp dy] 

It follows from the properties of the Laplace transform that 

(2~ri)-' f p-1 exp(pt) dp = -O(-- t )  (16) 
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because Re p <0. Hence, by definition of Fi(x, y, p), we have 

f p-lF~(x, y, p) dp= -F~(x, y, 0) 

and therefore Woo(t, x) satisfies the Fokker-Planck equation 

QWoo( t, x) 
3t 

= -7--oxj [aj(t, x) Woo(t, x)] + bj(t, x) vY:I 

1 }, , , , , = ,  ..... y = x  

For the second term wo1(t, x) by (14) we have the equation 

~Wo~(t, x) 
& 

= _8_~_Oxj [aj(t, x)Wo~(t, x)]-8-~j[bj(t,  x)(2zci) -~ 

• Fl(x , y, p) wit(t, x, y, p) dp dy 

x Wgo(t, x, y~, pl, y:, p2) dpl @2 dyl dy2] 

Under (14) we can express the function w1~ through Wo~ 
through Woo. So, for Wol(t, x) we obtain by (16) the equation 

aWo,(t, x) 
Ot 

= -~3xj [aAt, x) woe(t, x)] + ~  bat, X)Tyj~ 

x [b:,(t, y) F,(x, y, O) wm(t, Y)]v=.~} 

-- 37 bj(t, x) ~ bi,(t, y) Ozi: 

x[bj2(t,z) F2(x,y,O,z,O)woo(t,z)]:=y} ) 
v = x 

j, j l , j2= 1 ..... N (18) 

and W2o 

822/70/3-4-35 
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In order to give initial values for Eqs. (17) and (18), we must consider 
Eqs. (15). From these equations, by (13), we have Zoo(Z, x) =0,  Zoo(Z, x) =0,  
and under the conditions (12) the initial values for Eqs. (17) and (18) have 
the form 

Woo(O, x)  = p(O, x), Wo~(O, x) = 0 (19) 

Therefore the first two terms of the asymptotic expansion for P(t, x) 
are determined from Eqs. (17) and (18) under initial values (19). The first 
two terms of the boundary layer part are zero. 

Let us show that the third term of the boundary layer part is not zero 
and obtain a formula for it. It is easy to obtain under (10) the equations 

aZo~(~, x) 
~z 

- Ox: ~ [aj(O'x) z~176 fF~(x, y,p) 

x Zlo(Z, x, y, p) dp dy 1 

?Zlo(Z, x, y, p) 
3z -pzlo(Z, x, y, p) 

By the conditions (12) we have 

Zlo(O, x, y, p)= -Wlo(O, x, y, p)= --p-13b(~x j y) bs(O, y)p(0, y) 

d6(x- y) bj(O, y) p(O, y) Zlo(Z, x, y, p) =p-lem ~Xj 

O'ZO2(T:' X) 0 I f'~ f ~'r =~---~j bj(O,x) -oo FI(x'y'P)P-le~ 

,06(x-  y) ] 
x bit(O, y) p(O, YI -~fff dp dy 

=a-'~j bs(O'x) bj~(O,y)p(O,y) p-le pr 

x Fl(x, y, p)dp 1 ..... } 
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Using the definition of F~(x, y, p) and (16), we get 

f p-leP~Fl(x, y, p) dp = - Kl(s, x, y) ds 

Consequently, 

Zo2('c, x) = zo2(O, x ) -  ~-~j {bj(O, x) o-~j~ [bj~(O, y) p(O, Y) 

x KI(s, x, y) ds dr 1 
i y = x  

and under (13) 

Zo2(O, x)= ~"~j {bj(O,x) ~-~j~ Ibj~(O, y) p(O, Y) 

• Kl(s, x, y) ds dr1 
1 . . l y ~ x . l  

Therefore for Zo2(Z, x) we obtain the formula 

3 {bj(0, _ ~  [bj,(0, Zoo(Z, x) = ~ x) cy;, y) p(o, y) 

We conclude this section with some remarks. 

Remark  1. If r x) is a Gaussian, then for P(x, t) we have the 
asymptotic expansion in powers of ~2 because in the chain (10), only e 2 is 
present. The non-Gaussianity of the perturbation in Eq. (1) is essential for 
the correction of the Fokker-Planck approximation (17) because under 
(18) and (19) Wol(t, x)=0 .  

Remark  2. It follows from (17) and (18) that the second term of 
the asymptotic expansion for P(t, x) can be expressed by the quadrature 
formula through the solution of the Fokker-Planck equation (17). One 
can convince oneself that this occurs for higher terms of the expansion. 
Note that there are many methods for the analysis of the Fokker-Planck 
equation. (19) 

Remark  3. The boundary layer part, by (13), can be taken into 
consideration only for t near t = 0. 
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