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Stochastic Equations of the Langevin Type
under a Weakly Dependent Perturbation

Roman V. Bobryk’
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Asymptotic expansions for the probability density of the solution of a stochastic
differential equation under a weakly dependent perturbation are proposed. In
particular, linear partial differential equations for the first two terms of the
correlation time expansion are derived. It is shown that in these expansions
the boundary layer part appears and non-Gaussianity of the perturbation is
important for the Fokker~Planck approximation correction.

KEY WORDS: Langevin equation; stochastic Liouville equation; Fokker-
Planck equation; correlation time expansion.

1. INTRODUCTION

The description of statistical systems by means of stochastic differential
equations of the Langevin type is a powerful method of their analysis.!~*
As a matter of convenience it is often assumed that the stochastic per-
turbation in these equations is white noise. In this case the solution is
Markovian and the Fokker-Planck equation exists for the probability
density. If the stochastic perturbation is not white noise, then the solution
of the stochastic differential equation is a non-Markovian process and in
general one cannot obtain a closed equation for the probability density.
We consider the N-dimensional equation of the Langevin type

X (2)=a;(t, x, &)+ E(1e 72, x) b;(1, x, €), t>0, j=1.,.N (1)
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where ¢ is a small positive parameter, and the nonrandom functions
a;(t, x, ), b;(¢, x, &) have the asymptotic expansions

[ee]

a;(1, x, €)= i ehay(t, x), bi(t,x,e)= Y &bu(t, x) 2)
k=0

k= —1

The zero-mean random function &,(t, x)=&(ze ™2, x) is strictly stationary
in ¢ It satisfies a weakly dependent condition, namely the cumulants

Km(z_ Lo 8= 15 V3 Yisees ym)E <<§(t, y) é(tb yl)'“é(tm> ym)>>

of the random function &(z, x) satisfy the inequalities
‘Km(t gy T Ly Vs Vs ym)i

Sﬂmexp{~oc i It—tk|}, B, >0 3)
k=1

It follows from this and from the properties of the cumulants'":* % that the
values of function &,(f, x) are almost independent for different ¢ and
small &.

Let p(1, x) be the probability density for the N-component solution of
Eq. (1). It satisfies the stochastic Liouville equation*

op(t, 0 0
) =5 [ %006 9T~ [E X) (6 %2 p(6 )] (4)

Then, according to van Kampen’s lemma, ") the probability density P(, x)
for the N-component process x(z) is the average P(¢, x)= {p(t, x)) over
the distribution of &,(t, x). One can represent the formal solution of Eq. (4)
by means of the time-ordered exponential and obtain‘®

P(t, x)= <;rexp {-L’ Fls, x) ds}> (0, x) (5)

where T exp denotes the time-ordered exponential, and F(s, x) denotes the
differential operator

0 g
F(Ss X)ng—'aj(t’ X, 8) +6_x-§5(t’ -x) bj(ts X, 8)

J /
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It is difficult to evaluate the right-hand side of formula (5). The method of
ordered operator cumulants‘>*7") is the most general approach developed
for this purpose. In conformity with it, some approximations for finding
P(1, x) were obtained in refs. 8 and 9. Another approach consists in the
construction of the so-called best Fokker-Planck approximations. (12
For this purpose the projection approach® and the functional-calculus
approach™ also have been applied.

All of these methods were applied to the Gaussian model of the
random perturbation in Eq. (1) and for 4;(t, x, &) =aq;(x), b;(z, x, &)=
S—ij(X), and ie(ts X) = éa(t)'

The major aim of this paper is to propose an approach to the general
non-Gaussian model of noise in (1). It consists in the reduction of the
problem of computation of the right-hand side of (5) to the construction
of the solution of an infinite chain of integrodifferential equations contain-
ing a small parameter in derivatives. For this chain we use an asymptotic
method for singular perturbed equations (ref. 15, Chapter 4; ref. 16) and it
enables us to obtain for P(¢, x) the asymptotic formula

o)

P(t,x)= 3}, e"(galt, x) +z,(1, X)) (6)

k=0

where t =127 is a stretched variable.

This approach makes it possible to find successively closed equations
for go(, x), zo(1, x), g1(2, x), z,(7, x),.... I a;(1, x, &) =a;(2, x), b;(2, x, ¢) =
e~ 'b;(t, x), formula (6) gives the correlation time expansion. Moreover,
go(t, x) is the solution of the Fokker—Planck equation and other terms of
(6) can be obtained through the solution of the Fokker-Planck equation
by means of quadrature formulas. The so-called boundary layer terms
zo(7, x), z,(1, X),-.., are of vital importance for ¢ near ¢t =0.

Note that in the Gaussian case, g,(z, x)=0, and so the non-
Gaussianity of the perturbation in Eq. (1) is important for the correction
of the Fokker-Planck approximation.

2. A SINGULAR PERTURBED INFINITE CHAIN OF
INTEGRODIFFERENTIAL EQUATIONS FOR P(¢, x)

When we take the average of Eq. (1) over the distribution of &,(t, x)
we find the average {&.(f, x) p(t, x))>. In general one cannot express it
through P(z, x) and obtain a closed equation for P(z, x). We use the
following formula!”-'® that allows us to find this average through the
average of variational derivatives of p(z, x):
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&ult, x) p(2, X) >
hed 1 4 ! po0 ©
= Z ;—!Jo ...L f—w ...Lw K (672t =5 € HE=S1)s X, Viser Vi)

x< d"p(t, x)
565(31’ yl) "'5£a(sma ym)

Writing Eq. (4) in the integral form of f, we have for the variational
derivatives the equations

8"p(2, x)
55 (Sls yl) e 568(5,,,, ym)

>dy1---dymds1---dsm - )

S (DR DI

5mp(t19 X)
d
X ST (51, ¥1) 08 (5 y,,,)} &

09
- § 0u-5) 2206, 5,00

J

y 0™ 'p(Sns V)
555(‘?1’ yl)"'afs(sn—la yn—l) 565(&1—19 yn+l) "'5§e(sma ym)

where 6(z) is the Heaviside unit function and d(x) is the Dirac delta
function.

Note that formula (7) has sense when instead of p(z, x) we substitute
the variational derivatives of p(z, x). Taking it, (4), and (8) into account,
we obtain for P(z, x)= {p(t, x)> the infinite chain of integrodifferential
equations

o<p(t, X))
ot

(8)

=Lt %, e)p(1, )]
X
a o0
—é;[b (t X, 8 é

J’ J‘ J* J‘ t—s, l—Sm x
82 300y 82 s Xy Yigeess Vm

701, x) > ]
dy,---dy,, ds,---ds,,
"<6é£(s1,yl)--.ace(sm,y,,.) T @m B
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< 0"p(, x) >
6é (S19 yl)dé (sma ym)

5mp([11 X)
Jo ox, [" (t:, % €) <5ée(s1, 1) 0% (o, ym)> ] a
[

g[ (¢, X, 8)2
[T Kk( RN S

><< 6m+kp(z1, x) >
5 8S19 yl 5ée(sm+k9 ym+k)

X Ayt A s ke sy "'d5m+k] dt,

06(x — yn)

'—ngl G(I.—Sn) x

J

o

bj(srn Yns 8)

o &~ p(s, 72) >
568(Sl> yl) "'5§e(sn—l> yn—l) 6£e(sn+la yn+1) "'6ée(sm3 ym) '
m=1,2 9)

It follows from (3) that the Laplace transforms

Fm(x7 Yis Prseess Vems pm)
w pw® m
=JO L exp(— Z p,,t,,) K (2 s Loy Xy Vigews V) ALy -+ dt,
. n=1

exist for —a<Re p,<0,n=1,2,3,.,m
Let us introduce the following notation: wq(2, x) = {p(2, x) ),

Wm(t, Xs Yis P1seees Vo> Pm)

mon [ Lo § pems]

o"p(t, x) >
X ds,---ds,,, m=1,2,3,.
<565(Sh )’1)"'555(%, ym) :

Then, using the inverse Laplace transform formula, we can reduce the
chain (9) to an infinite chain of integrodifferential equations containing a
small parameter in the derivatives
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Owe(t, x)
ot
-~ Lot n awolt, ]~ | Blexe) Tt

0x; 0x; Q2niy”

m

xf: fio [ [ Fult, 715 1 Vs P)

me(t’ Xy V15 P1ses Yms pm) dpl dpmdyl dym:l

wo(0, x) = p(0, x) = 6(x — x(0)) (10)
2 awm(ta X V1> Prsees Yo pm)
€
ot

96(x—y,)
ox;

J

=Y [pnwm(t, Xy Y1s Pires Yms Pm) — € bi(t, yu €)
n=1

xwm—l(ta Yns Vis Prsees Yne1s Pn—1y>» Yn+1s Pnsysens Ym> Pm)]

7

—'82 'a;' [aj(t’ X, 8) Wm(tf X5 yla plr"a yma pm)]
J

a ] k+2

_a—x—j[bj(t, x,€) Y. -_———k!(27z:i)"

k=1

© ©
XJ j J."'J‘Fm(xa Ym+1s pm+1>'"7ym+k’pm+k)
— o0 —
xwm+k(t: X, Y15 Pisves Ymt ko pm+k) dpm+l "'dpm+k
><dymﬂ-l "'dym+k}a Wm(05 xayl’p17""ym>pm)=0: m=l, 25 3,

Here and below the integrals are taken along the straight lines Re p, =
-0, <0, k=1, 2, 3,.., if integration boundaries are not determined.
Since in the chain (10) Re p, <0, we use the approach from ref. 15,

Chapter 4, and ref. 16. Namely, let us seek the solution of this chain in the
form

o«
wolt, x) = z e (worlt, X) + 2ok (1, X))
k=0
<]
Wm(t: X, Vis Pirses Vens pm)= Z Sk(ka(Z, X, Vi p17"'5 Y pm)
k=0

+ka(17 Xy Yis Pises Yins pm)) (11)
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where 1=16"% m=1,2,3,.., and the functions Wor, Zogs Wik, Zpye MUSE
satisfy the initial conditions

Wao(0, X} + 200(0, x) = p(0, x)
Wor(0, x) + 20, (0, x) =0
Wil 0y X, Y15 Proves Vims Do) F Zoie0, X, V15 Piseves Yims Do) =0 (12)
and

hm ZOk(Ts X) =Oa hm ka(‘l', Xs Yis Piseess Yo pm) = 0

T — OO

k=0,1,2,3,., m=1,2,3,. (13)

Substituting the regular parts

[ee] [ce]

ekak(ta X), lekwmk(t’ Xs Y15 Pisews Vs pm)
k=0 k=0

of the expansions (11} instead of wy(t, x) and w,(2, X, Y15 Pises Yms Pra)
into (10) and equating coefficients of &% ¢',.., one can successively obtain
closed integrodifferential equations for functions wg,(¢, x), k=0, 1,..., but
their solutions do not satisfy in general the initial conditions for the chain
(10). The boundary layer parts

o o«
Z akZOk(T5 X), Z 8kzm/c(7> Xy Vis Pisees Vs Pm)
k=0 k=0
serve this purpose.

Introducing the stretched variable 1=1r¢~* in (10), substituting the
boundary layer parts into (10), expanding in Taylor series au(z, x)
and 'b,(1, x) about r=0, and equating coefficients of ¢ ¢',.., one can
successively obtain closed equations for zy(t, x), k=0, 1,....

-2

3. CORRELATION TIME EXPANSION FOR THE PROBABILITY
DENSITY P(¢, x)

Let us suppose that a;(1, x, £) = a,(1, x), b;(1, x, €) =&~ 'b;(1, x). In this
case the parameter ¢ defines the correlation time of the random perturba-
tion in Eq. (1). Following the above-mentioned approach, we shall obtain
linear partial differential equations for the first two terms of the asymptotic
expansion of P(t, x) in powers of &.
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Substituting the regular and boundary layer parts of the expansions

(11) in (10) and equating coefficients of ¢°, &', we get the equations for

Woolts X), Wor(t, X):

aWOk(t’ X)
ot

s k+1 1
= -—-a—x;[aj(t,X) woi(t, x)]— [b (, x) zlf—n'-(zﬂ—l)

xjw fw [ [ Bt 905 P Vs P)

X Wm,k-m+l(t’ Xs YVis Prss Yo pm) dpl dpm dyl dym]

k 08(x—y,)
z [inko (t, X, Y15 Prowes Vi Pi) = —(—6‘;‘“‘

ij(L yn) Wk—l,O(t’ Yy Y15 Proes Y15 Pn—15 Yn s 1 Priir= Vi pk)]=0>

k=0,1

06(x —
riwult x, , P)=_(—);;—ylbj(ts y) woilt, ¥) (14)

and also for terms zg(7, x) and zy,(7, x) of the boundary layer part

0z0(1, x)=0’ 0zq,(7, x)=0 (15)
ot ot
Under (14) we obtain for weolt, x) the equation

Owgolt, x)
Jt

3 2 L
= —Ex—] [aj(t, x) WOO(t> X)] _'a_x;l:bj(t’ X)Z_’I[;

o 06(x —
|7 [ 5

i)

B,(t, ) woolt, ) dp dy]

It follows from the properties of the Laplace transform that

(2ui)~* [ p~" exp(pt) dp = —6(—1) (16)
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because Re p < 0. Hence, by definition of F (x, y, p), we have
(271)"* | p7'Fi(x, 3 p) dp= = Fi(x, 3, 0)

and therefore wy(2, x) satisfies the Fokker—Planck equation
Owgo(t, Xx)
ot
d
bt x) 5.

Jt

0 0
= —a [a]-(t, x) WOO(I! x)] +__)-C—{

X[b,-x(r, y) F(x, y, 0) woo(z, y)} . } =1, N (17)

For the second term wy, (¢, x) by (14) we have the equation
aWOl(l‘f .X)
ot

-

é d
=~ 5z [t 9wt 9] [bj(r, x)(2mi) !
XJ JFl(xa J’aP)Wn(tax»)’,P)dpdy

+0m) 2| [ [ Fatx i 21 920 22)
X Waolls X, Y1, P15 Y2, P2) dp; dp, dy, db}

Under (14) we can express the function w,, through w, and wy,
through wyy. So, for wy,(#, x) we obtain by (16) the equation

Owgy{t, x)
ot

b 0 0
=~ (46X (s 0T+ {b;(t, 07
x|:bj1(t’ y)Fl(x> Y, 0) WOI(I’ )’):l_ }

d Fij 0
5 (b,-(t, 05 {b_f,u, N

X [b,,(t, ) Fy(x, p,0, z,0) weolt, z)]:=_‘} )

j’jl!j2=19--'9N (18)

822/70/3-4-35



1054 Bobryk

In order to give initial values for Eqs. (17) and (18), we must consider
Eqgs. (15). From these equations, by (13), we have zy(t, x) =0, z,,(z, x) =0,
and under the conditions (12) the initial values for Eqgs. (17) and (18) have
the form

WOO(Oa x)=p(0, X), WOI(Oax)=O (19)

Therefore the first two terms of the asymptotic expansion for P(f, x)
are determined from Eqgs. (17) and (18) under initial values (19). The first
two terms of the boundary layer part are zero.

Let us show that the third term of the boundary layer part is not zero
and obtain a formula for it. It is easy to obtain under (10) the equations

0z¢5(7, x)
ot
= _9% 0 9 0
= [a;(0, x) zoo(7s x)]—g;[bj(o, x)'f_co _fo(x, v, p)

J
X zy(T, X, ¥, p) dp dy]

azl()(":: X, Y, p)

e =pz1o(1, X, ¥, P)

By the conditions (12) we have

06(x —
200 %, 3, PY= — w0, % 3, p)= =0~ 524,00, ) 900, )

J

06(x —
Z10(%, X, ¥, p)=p"le”’——(a—x_-y—)b,-(0, ) p(0, )

J

0zgo(T, x) 0 © e
e = | 2O [ [Fixyppe
06(x —
xb;,(0, y) p(0, y) %dp dy:l
J
= a a —1,p7
s {”f‘o’ 3y, [bﬂ(o, )00, 3) [ p~te

x Fy(x, y,p)dp] }
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Using the definition of F,(x, y, p) and (16), we get

f ple”Fi(x, y, p)dp= —fo Ky(s, x, y) ds
Consequently,

0 0
2ol X) = 220, X) = 5= {00, 5) 3= 5,0, ) 00.)

2

XL: f:) K, (s, x, y) ds dtllzx}

and under (13)

d

0
202(05 x)z'a_x_ {bj(o’ x)é—'}}_[bjl(oﬂ y) p(03 }’}

J1

xj:o J:o K (s, x, y) ds dr{lyﬂ}

Therefore for zy,(z, x) we obtain the formula

0 0
ZOZ(T’ x)=é_x— {bj(OS X)Ey—[bjl(o, }’) p(Oa .V)

xro (s—1) Ki{s, x, y)ds} }

We conclude this section with some remarks.

Remark 1. If &(s, x) is a Gaussian, then for P(x,t) we have the
asymptotic expansion in powers of ¢ because in the chain (10), only & is
present. The non-Gaussianity of the perturbation in Eq. (1) is essential for
the correction of the Fokker-Planck approximation (17) because under
(18) and (19) wy, (¢, x)=0.

Remark 2. It follows from (17) and (18) that the second term of
the asymptotic expansion for P(¢z, x) can be expressed by the quadrature
formula through the solution of the Fokker-Planck equation (17). One
can convince oneself that this occurs for higher terms of the expansion.
Note that there are many methods for the analysis of the Fokker—Planck
equation. **)

Remark 3. The boundary layer part, by (13), can be taken into
consideration only for ¢ near r=0.
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